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1. Introduction

Perhaps all natural and physical systems are governed by non-linear laws of nature. The
dynamics of most of such systems can be mathematically represented by non-linear differential or
integral equations, which can be studied by analytical or numerical techniques. These techniques,
in many instances, can successfully explain certain phenomena that are exclusive to non-linear
systems. One such a phenomenon is chaotic behavior of systems. Chaotic behavior can be
considered as both desirable and unwanted response of systems. For instance, chaotic systems can
be used in secure communication systems to provide chaotic masking and modulation of
transmitted messages; see, e.g., Refs. [1–5]. In most engineering systems, however, chaotic
behavior is unwanted and should be suppressed. In the past decades, researchers have devised
techniques to control chaotic behavior in non-linear systems; see, e.g., Refs. [1–3,6–17] and the
references therein.

In this paper, it is shown that an effective means of suppressing the effects of non-linearities,
and consequently possible chaotic behavior in a class of non-linear systems is the application of
disturbance observers. Disturbance observers are useful tools that were originally proposed in
Refs. [18,19] as means of estimating disturbances to linear systems and cancelling them
subsequently. Later, the theory of disturbance observers was advanced in Ref. [20]. Presently,
disturbance observers are successfully used in achieving robust stability and performance in
motion control systems, for instance, robotic systems, high-speed machining systems, (micro)
positioning systems, disk drives; see, e.g., Refs. [21–27] and the references therein. It appears that
disturbance observers are mostly designed for linear systems. There are, however, some works
where the application of disturbance observers to non-linear systems is reported; see Refs. [28–34].
The present paper illustrates that disturbance observers can make members of a certain class of
non-linear systems behave linearly.
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The organization of the paper is as follows. In Section 2, the class of non-linear systems to be
studied is presented. A non-linear system in this class has the property that its output is equal to
the summation of the output of a stable single-input single-output (SISO) linear time-invariant
system and a bounded disturbance. The bounded disturbance captures the effects of all non-
linearities in the system. In Section 3, a disturbance observer is designed to estimate the effects of
non-linearities in a system in the class under consideration (equivalently, the bounded
disturbance) and cancel them subsequently. Having the non-linear effects cancelled, the system
behaves linearly. In Section 4, an example is given to show that chaotic behavior due to a non-
linearity in a Duffing-type system can be effectively suppressed by a disturbance observer.

2. Non-linear systems

In this section, a class of SISO non-linear systems is introduced. A member of this class,
depicted in Fig. 1, is represented by

N:
’xðtÞ ¼ AxðtÞ þ f ðxðtÞ; tÞ þ buðtÞ; xð0Þ ¼: x0;

yðtÞ ¼ cxðtÞ;

(
ð1Þ

for all tX0; where the state vector xðtÞARn; the initial state vector x0ARn; the input uðtÞAR; the
output yðtÞAR; the coefficient matrix AARn�n; the input (influence) vector bARn; the output
(readout) vector c ¼ ½c11 c12 y c1n�AR1�n; and the non-linear function f :Rn � Rþ-Rn is given
by

f ðxðtÞ; tÞ ¼ ½ f1ðxðtÞ; tÞ f2ðxðtÞ; tÞ y fnðxðtÞ; tÞ�T: ð2Þ

It is assumed that
(A1) The matrix A is Hurwitz.
(A2) The pairs ðA; bÞ and ðA; cÞ are, respectively, completely controllable and completely

observable.
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Fig. 1. The non-linear system N represented by Eq. (1).
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(A3) The non-linear function f ; though not exactly known, is norm bounded. More precisely,

jj f jjN :¼ max
1pipn

sup
xARn

sup
tX0

j fiðx; tÞjpkf oN; ð3Þ

where kf > 0 is a constant real number.
Suppose that the system N exhibits a behavior exclusive to non-linear systems, such as chaotic

behavior. Moreover, suppose that this behavior is deemed undesirable. Thus, the goal would be to
suppress the non-linear behavior. This goal can be achieved by a disturbance observer as it will be
shown later.

Before presenting the design of disturbance observers, some mathematical results are
established. From Eqs. (1), it follows that the output of the system N can be written as

yðsÞ ¼ HðsÞuðsÞ þ cðsIn 	 AÞ	1x0 þ dðsÞ; ð4Þ

where yðsÞ; uðsÞ; and dðsÞ are, respectively, the Laplace transforms of yð
Þ; uð
Þ; and the time
function

dðtÞ ¼ c

Z t

0

exp ðAðt 	 tÞÞ f ðxðtÞ; tÞ dtAR; ð5Þ

for all tX0; In denotes the n � n identity matrix, and

HðsÞ ¼ cðsIn 	 AÞ	1b: ð6Þ

The time function t/dðtÞ has a useful property established as follows. Since by assumption (A1),
the matrix A is Hurwitz, there exist constant real numbers M > 0 and s > 0; such that

jjexpðAtÞjj
N
pM expð	stÞ; ð7Þ

for all tX0 (see, e.g., Ref. [35, p. 195]). Using inequalities (3) and (7) in Eq. (5), it is concluded that
t/dðtÞ is a bounded function of time. More precisely,

jjd jj
N

:¼ sup
tX0

jdðtÞjp
Xn

j¼1

jjc1j jMkf =soN: ð8Þ

From Eqs. (4)–(6) and inequalities (7) and (8), it is concluded that the output of the non-linear
system N is equal to the summation of the output of the stable SISO linear time-invariant system:

H:
’%xðtÞ ¼ A %xðtÞ þ buðtÞ; %xð0Þ ¼: %x0 ¼ x0;

yLðtÞ ¼ c %xðtÞ;

(
ð9Þ

and the bounded function of time dðtÞ for all tX0; where the state vector %xðtÞARn and the output
yLðtÞAR: By assumption (A2), the representation of the system H is minimal. The transfer
function corresponding to H is irreducible and is that given in Eq. (6).

A conclusion to be drawn is that the non-linear system N can be equivalently represented by the
linear system in Fig. 2. This system is denoted by Hþd and has a useful property to be exploited in
the next section.

ARTICLE IN PRESS

S.M. Shahruz, L.R. Siva / Journal of Sound and Vibration 271 (2004) 481–491 483



3. Linear behavior by disturbance observers

Representing the non-linear system N by the equivalent linear system Hþd in Fig. 2 is of great
advantage, because the effects of non-linearities in N appear as the bounded disturbance dð
Þ in
Hþd : Therefore, if one seeks to suppress the effects of non-linearities in N; then one should design
a control law that suppresses the effect of dð
Þ in Hþd : The latter can be achieved by a disturbance
observer that estimates dð
Þ and cancels it subsequently. Therefore, the goal of this section is to
design a disturbance observer to make N behave linearly and, for instance, be free of chaotic
behavior.

A disturbance observer added to the system Hþd is shown in Fig. 3. In this figure, HnðsÞ
represents the nominal transfer function (mathematical model) corresponding to HðsÞ in Eq. (6).
In order to implement a disturbance observer, the filter QðsÞ is added to the system to make
QðsÞH	1

n ðsÞ a realizable (at least a proper) transfer function, because H	1
n ðsÞ is often unrealizable.

A successful design of a disturbance observer crucially depends on the design of QðsÞ: Due to its
important role, the design of QðsÞ has been extensively studied; see, e.g., Refs. [19,20,24,25]. It
turns out that QðsÞ should be a low-pass filter of unity DC-gain. A typical form of QðsÞ is

QðsÞ ¼

Pm	r
k¼1 akðtsÞ

k þ 1Pm
k¼1akðtsÞk þ 1

; ð10Þ

where r is at least equal to the relative degree of HnðsÞ and ak > 0 and t > 0 are constant real
numbers.

From Fig. 3, it is concluded that in the absence of the measurement noise ðw � 0Þ;

*dðsÞ ¼ ½HðsÞ 	 HnðsÞ�vðsÞ þ cðsIn 	 AÞ	1x0 þ dðsÞ; ð11aÞ
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Fig. 2. The linear system Hþd : This system is an equivalent representation of the non-linear system N:

Fig. 3. A disturbance observer added to the system Hþd (equivalently N) to estimate d which captures the effects of

non-linearities in N: An estimate of d is *d which is cancelled subsequently.
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yDOBðsÞ ¼ ½1 þ HðsÞð1 	 QðsÞÞ	1QðsÞH	1
n ðsÞ�	1HðsÞð1 	 QðsÞÞ	1uðsÞ

þ ½1 þ HðsÞð1 	 QðsÞÞ	1QðsÞH	1
n ðsÞ�	1½cðsIn 	 AÞ	1x0 þ dðsÞ�; ð11bÞ

where the output of the system is denoted by yDOB to indicate a disturbance observer is
implemented. Several comments regarding Eqs. (11) are made:

(1) The filter QðsÞ should be designed such that the transfer function

½1 þ HðsÞð1 	 QðsÞÞ	1QðsÞH	1
n ðsÞ�	1 ð12Þ

is stable.
(2) By assumption (Al), the matrix A is Hurwitz. Thus, when Eq. (11a) is considered in the time

domain, the effect of the initial state vector x0 in this equation decays to zero. Moreover,
HðsÞEHnðsÞ: Thus, from Eq. (11a), it is concluded that *dð
Þ is an estimate of the bounded
disturbance dð
Þ:

(3) The filter QðsÞ is a low pass filter of unity DC-gain. Thus, from Eq. (11b), it follows that

yDOBðsÞEHnðsÞuðsÞ: ð13Þ

That is, the effect of the bounded disturbance dð
Þ (as well as the decaying effect of the initial state
vector x0) in the system in Fig. 3 is suppressed, and the output of the system is approximately
equal to that of the linear nominal system.

An implementation of the disturbance observer on the system N is shown in Fig. 4. The system
in this figure is denoted by NDOB to indicate a disturbance observer is added to N: The equivalence
of NDOB and the system in Fig. 3 asserts that the effects of non-linearities in NDOB can be
suppressed. That is, NDOB would behave linearly.

Next, the performance of NDOB is examined.

4. Example

In this section, an example is presented to illustrate the efficacy of disturbance observers in
suppressing the effects of non-linearities and possible chaotic behavior in a non-linear system in
the class of systems considered in this paper.
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Fig. 4. The system NDOB: This system is N to which a disturbance observer is added.
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Consider a Duffing-type system represented by

.xðtÞ þ 0:1’xðtÞ þ xðtÞ 	 tan hð2xðtÞÞ ¼ 0:5 cos t; xð0Þ ¼ 0; ’xð0Þ ¼ 0; ð14Þ

for all tX0; where xðtÞAR: Considering the first two terms in the expansion tan hð2xÞ ¼
2x	 8x3=3 þ?; system (14) should behave like a Duffing system (see, e.g., Refs. [36–38]). This
fact is shown in the following.

By letting x1ðtÞ ¼ xðtÞ and x2ðtÞ ¼ ’xðtÞ for all tX0; system (14) can be written as

’x1ðtÞ

’x2ðtÞ

" #
¼

0 1

	1 	0:1

" #
x1ðtÞ

x2ðtÞ

" #
þ

0

tan hð2x1ðtÞÞ

" #
þ

0

1

" #
0:5 cos t;

x1ð0Þ

x2ð0Þ

" #
¼

0

0

" #
; ð15aÞ

yðtÞ ¼ ½1 0�
x1ðtÞ

x2ðtÞ

" #
: ð15bÞ

It is straightforward to verify that assumptions (A1)–(A3) hold for system (15). The output of
system (15) is depicted in Fig. 5 and is denoted by y: Moreover, the trajectory corresponding to
the solution of the system in the phase plane (x1; x2) is shown in Fig. 6. It is evident that system
(15) exhibits a chaotic behavior typical to Duffing systems. The output of the linear system H; that
is, system (15) in the absence of the non-linearity tan hð2x1ð
ÞÞ; is depicted in Fig. 5 and is denoted
by yL: The steady state of yL is the periodic function of time t/5 sin t; which is obtained by
applying results from the theory of linear oscillations.
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Fig. 5. Responses of the systems N; H (the non-linearity-free N), and NDOB; denoted by y; yL; and yDOB; respectively, in

the absence of the measurement noise w: It is evident that y is chaotic. Moreover, it is evident that yDOB and yL almost

overlap. That is, the disturbance observer has suppressed the effect of the non-linearity.
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The difference between y and yL is due to the non-linearity in system (15). It is now shown that
the effect of this non-linearity, and consequently chaotic behavior, can be effectively suppressed
by a disturbance observer. It is remarked that the control of chaotic behavior in Duffing systems is
of great interest; see, e.g., Refs. [39–43].

The first step to the design of a disturbance observer is to obtain the transfer function HðsÞ
corresponding to the system H: This transfer function is readily determined from Eq. (6) and is
given by

HðsÞ ¼
1

s2 þ 0:1s þ 1
: ð16Þ

Having HðsÞ; a disturbance observer is implemented on system (15). The resulting system is NDOB

in Fig. 4, where HnðsÞ ¼ HðsÞ; the system N is that in Eq. (15), and

QðsÞ ¼
700

s2 þ 9s þ 700
: ð17Þ

The output of NDOB in the absence of the measurement noise ðw � 0Þ is shown in Fig. 5 and is
denoted by yDOB: It is evident that yDOB and yL almost overlap, except that the former has a
slightly larger amplitude. That is, the disturbance observer has successfully suppressed the effect
of the non-linearity in system (15).

The effect of the measurement noise wð
Þ on the performance of the system NDOB is studied next.
Let wð
Þ be a band-limited white noise. The output of the system in the presence of wð
Þ is depicted
in Fig. 7 and is denoted by yDOB: This output is compared to that of the system H; denoted by yL:
It is evident that yDOB and yL almost overlap, except that the former has a slightly larger
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Fig. 6. Trajectory corresponding to the solution of the system N in the phase plane (x1; x2).

S.M. Shahruz, L.R. Siva / Journal of Sound and Vibration 271 (2004) 481–491 487



amplitude. That is, the disturbance observer is able to suppress the effect of the non-linearity in
system (15) even in the presence of the measurement noise.

The magnitude of the control input vð
Þ in Fig. 4, which is applied to the system N; is assessed by
plotting the time function t/vðtÞ: Plots of t/vðtÞ in the absence and presence of the
measurement noise wð
Þ are shown in Figs. 8(a) and (b), respectively. It is evident that the
magnitude of vð
Þ is not large. For the purpose of comparison, the close-ups of the control inputs
in the absence and presence of wð
Þ are plotted in Fig. 8(c) and denoted by vw�0 and vwa0;
respectively.

5. Conclusions

In this paper, the application of disturbance observers to suppress chaotic behavior in a class of
single-input single-output non-linear systems was studied. A non-linear system in this class has the
property that the effects of all non-linearities in the system can be captured in a bounded
disturbance. Knowing this fact, it was shown how a disturbance observer can be designed to
estimate the bounded disturbance (equivalently, the effects of non-linearities in the system) and
cancel it subsequently. The disturbance observer is thus able to make the non-linear system
behave linearly and, for instance, be free of chaotic behavior. The results of the paper were
corroborated by using a disturbance observer to suppress chaotic behavior due to a non-linearity
in a Duffing-type system.

ARTICLE IN PRESS

Fig. 7. Responses of the systems H and NDOB; denoted by yL and yDOB; respectively, in the presence of the

measurement noise w: It is evident that yDOB and yL almost overlap.
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Three remarks are made regarding disturbance observers applied to the class of non-linear
systems: (1) disturbance observers are linear systems, but yet they are able to suppress the effects
of non-linearities in the systems; (2) disturbance observers can suppress the effects of non-
linearities that are not exactly known; (3) the application of disturbance observers is not exclusive
to chaotic systems. If non-linearities in a system cause an undesirable behavior, say limit cycle
behavior, then disturbance observers can be used to suppress such a behavior. For instance, flutter
in aircraft wings can be considered as limit cycle behavior. Thus, disturbance observers can be
used to suppress flutter; work in this area is in progress and will be reported elsewhere.
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Fig. 8. (a) The control input v applied to the system N in the absence of the measurement noise w: (b) The control input

applied to N in the presence of w: It is evident that the magnitude of v is not large. (c) Comparison of the control inputs

in the absence and presence of w; denoted by vw�0 and vwa0; respectively.
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